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KEY PO INT S

l FXII inhibition
prevented the
activation of kallikrein-
kininogen and
coagulation systems
induced by heat-
inactivated S aureus.

l Blocking FXII
decreased complement
activation and
inflammatory
cytokines, preserved
organ function, and
saved S
aureus–challenged
baboons.

Activation of coagulation factor (F) XI promotes multiorgan failure in rodent models of
sepsis and in a baboon model of lethal systemic inflammation induced by infusion of heat-
inactivated Staphylococcus aureus. Here we used the anticoagulant FXII-neutralizing an-
tibody 5C12 to verify the mechanistic role of FXII in this baboon model. Compared with
untreated control animals, repeated 5C12 administration before and at 8 and 24 hours
after bacterial challenge prevented the dramatic increase in circulating complexes of
contact system enzymes FXIIa, FXIa, and kallikrein with antithrombin or C1 inhibitor, and
prevented cleavage and consumption of high-molecular-weight kininogen. Activation of
several coagulation factors and fibrinolytic enzymes was also prevented. D-dimer levels
exhibited a profound increase in the untreated animals but not in the treated animals. The
antibody also blocked the increase in plasma biomarkers of inflammation and cell damage,
including tumor necrosis factor, interleukin (IL)-1b, IL-6, IL-8, IL-10, granulocyte-macrophage
colony-stimulating factor, nucleosomes, andmyeloperoxidase. Basedon clinical presentation
and circulating biomarkers, inhibition of FXII prevented fever, terminal hypotension, re-
spiratory distress, andmultiorgan failure. All animals receiving 5C12 hadmilder and transient
clinical symptoms and were asymptomatic at day 7, whereas untreated control animals

suffered irreversible multiorgan failure and had to be euthanized within 2 days after the bacterial challenge. This study
confirms and extends our previous finding that at least 2 enzymes of the contact activation complex, FXIa and FXIIa, play
critical roles in the development of an acute and terminal inflammatory response in baboons challenged with heat-
inactivated S aureus.

Introduction
Certain infections can provoke pathologic host reactions char-
acterized by systemic inflammation, activation of coagulation,
organ failure, and ultimately death. An estimated 48.9 million
cases of sepsis occurred worldwide in 2017, including 11 million
deaths (19.7% of all global deaths).1 Therapeutic interventions
are still limited to: supportive care; antibacterial, antifungal, or
antiviral therapies; and corticosteroids. Mortality remains high in
patients with advanced forms of sepsis despite the use of potent
antibiotics that rapidly kill bacteria and terminate systemic in-
fections.2 Effective therapies directly targeting the underlying
pathophysiology of sustained and progressive sepsis have
remained elusive, as evidenced by past attempts to develop

numerous drugs, including activated protein C, which failed to
show an overall outcome benefit in clinical trials.3

Coagulation factor (F) XII is a serine protease positioned at the
nexus of the kallikrein-kinin, complement, coagulation, and fi-
brinolysis systems. However, the true physiological role of FXII
remains unknown, as individuals born without FXII have no
apparent pathology such as bleeding diathesis or immuno-
compromise and are generally identified through incidental
detection of a prolonged activated partial thromboplastin time
(aPTT). However, hyperactivity of FXII seems to be pathologic, as
mutations in exon 9 provoke a rare form of hereditary angioe-
dema.4 Investigation into the role of FXII in the pathogenesis of
bacterial sepsis was initiated by the pioneering work of Pixley
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and colleagues,5-7 who found that preadministration of the
anti–b-FXIIa antibody C6B7 before lethal Escherichia coli chal-
lenge altered the clinical course of septic shock in baboons, even
preventing death in 1 of 5 animals. The extent to which FXII was
neutralized by C6B7 in these experiments is unknown, and the
mechanistic role by which FXII contributes to sepsis remains to
be elucidated; this experiment served as compelling ground-
work, however, for the continued investigation of the contact
system in models of inflammation and infection.

Later studies suggested that the contact activation system
composed of FXII, FXI, high molecular weight kininogen (HK),
and prekallikrein may contribute to systemic inflammation
caused by certain infections. Our studies in mouse models of
listeriosis and polymicrobial sepsis and in a baboon model of
lethal heat-inactivated Staphylococcus aureus (HI-SA) provided
experimental evidence that a contact activation system, in
particular reciprocal interactions of FXI and FXII, plays a path-
ogenic role in the development of some forms of severe sepsis or
bacterial component–induced acute shock.8-12 Additional data
also indicate that the contact activation could have a pathogenic
role in select forms of sepsis.13,14 These findings build on the
earlier sepsis models by Pixley and colleagues,5-7 lending weight
to the idea that targeting contact activation may prevent or
reduce the progression of some forms of infections into terminal
septic shock and death, even in cases in which antimicrobial
therapies have stopped the infection.

The current article expands on our previous studies regarding
the role of contact activation in inflammatory responses. Spe-
cifically, we investigated the mechanistic role of FXII in our
baboon model of lethal challenge with HI-SA. This model is
designed to study the effects of the pathogen-associated mo-
lecular patterns (PAMPs) released from dead S aureus rather than
sepsis induced by live bacteria. We have shown previously that
gram-positive PAMPs such as peptidoglycan are strong inducers
of coagulation and complement cascades and can be major
contributors to sepsis coagulopathy.15 To test the effects of
selective pharmacologic inhibition of FXII activity, the potent
neutralizing monoclonal antibody 5C12 was used to target the
catalytic domain of human FXII.

Materials and methods
Preparation of anti-FXII antibody
The 5C12 function-blocking anti-FXII antibody was produced as
previously described.13,16 Briefly, FXII knockout mice were im-
munized with a mixture of human and murine recombinant FXII,
spleens were removed after 50 days, fused with myeloma cells,
and subcloned to form a stable expressing hybridoma cell line.17

To purify 5C12, hybridoma cells were cultured and expanded in
a CL1000 bioreactor (Corning Inc, Corning, NY), and superna-
tants were purified by 2-step chromatography using a cation
exchange (mercaptoethyl-pyridine) column followed by affinity
purification (protein A/G). The inhibitory effect of 5C12 was
evaluated in aPTT assays and compared with the anti–b-FXIIa
monoclonal antibody C6B7 (GeneTex, Irvine, CA). The anti-
bodies (0-2 mM) were incubated first with human platelet-poor
plasma (33% final) for 10 minutes, then with aPTT reagent for
3 minutes before adding CaCl2 (8.3 mM final) and measuring
clotting time with a KC4 analyzer (Trinity Biotech, Bray, Ireland).

The data in supplemental Figure 1 (available on the Blood Web
site) show that 5C12 inhibits contact activation of coagulation at
lower concentrations than C6B7, which behaves as a relatively
poor anticoagulant in the aPTT assay.

Lethal challenge of baboons with HI-SA infusion
The experiments were approved by both the Interfaculty Animal
Ethics Committee of the University of the Free State (Bloem-
fontein, South Africa) and the Institutional Animal Care and Use
Committee of MD Anderson Cancer Center (Houston, TX). All
experiments were conducted in compliance with the Animal
Welfare Act, the Guide for the Care and Use of Laboratory
Animals, and the National Institutes of Health Office of Labo-
ratory Animal Welfare. We used healthy Papio species baboons
(5 males and 3 females) ranging in body weight from 6 to 21 kg,
with white blood cell counts ,13 000/mL and hemoglobin
.10 g/dL.

Althoughwe have not historically observed sex differences in our
model, we included both male and female animals in our study.
However, because female animals are used for breeding, they
are less available for experimental groups. Animals were dis-
tributed randomly between the control, untreated group (n5 4;
3 male and one female animal), and the treated group (n 5 4;
2 male and 2 female animals). Both groups were challenged with
a lethal dose (;3 3 1010) of heat-inactivated S aureus (ATCC
49496) as previously described.12 All animals received bacteria
via a 2-hour intravenous infusion. Baboons in the treatment
group received 3 intravenous boluses of 5C12 antibody: (1)
10 mg/kg at 30 minutes (T-0.5) before challenge; (2) 10 mg/kg at
8 hours (T18); and (3) 5 mg/kg at 24 hours (T124) after chal-
lenge. Control animals did not receive 5C12.

The animals were returned to the cage 8 hours after bacteria
infusion, continuously monitored, and humanely euthanized if
they exhibited signs of unrecoverable organ failure, as de-
scribed.12 Surviving baboons were euthanized at 7 days’ post-
challenge. Blood samples were collected and physiological
parameters measured as detailed. Coagulation parameters (fi-
brinogen, prothrombin time [PT], and aPTT) and hematologic
parameters (red blood cell [RBC] counts, hematocrit, hemo-
globin, platelet counts, and differential white blood cell counts)
weremonitored. At time of euthanasia, blood and tissue samples
were collected for biochemical analyses, and select tissue
samples were collected postmortem for histopathology.

Biochemical tests
Serum blood urea nitrogen, creatinine, alanine aminotransfer-
ase, amylase, and glucose levels were measured by using stan-
dard clinical diagnostic tests. Blood lactate levels were measured
by using a Lactate Scout Analyzer (EKF Diagnostics GmbH,
Barleben, Germany). Plasma myeloperoxidase (MPO) was mea-
sured by using the Fluoro MPO Detection Kit (Cell Technology,
Fremont, CA). Tissue factor (TF) mRNA was determined by
quantitative reverse transcription polymerase chain reaction as
described elsewhere.15

ELISA assays
Factor XIIa-antithrombin (FXIIa-AT), FXIIa-C1 inhibitor (FXIIa-
C1INH), kallikrein (Kal)-AT, Kal-C1INH, FXIa-AT, FIXa-AT, FVIIa-
AT, FXa-AT complexes, and thrombin-AT (TAT) were quantified
as previously described.12 The standards were prepared by
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incubating lepirudin-anticoagulated baboon plasma with dex-
tran sulfate, except for FVIIa-AT, in which dextran sulfate was
substituted with TF–phospholipid vesicles (PT reagent).

DuoSet ELISA Kits (R&D Systems, Minneapolis, MN) were used
for assessing plasminogen activator inhibitor-1 (PAI-1) and
tissue-type plasminogen activator (t-PA). Total and cleaved HK
levels weremeasured by using the 3E8monoclonal anti-kininogen
capture antibody and 2B7 biotinylatedmonoclonal anti-kininogen
detection antibody.18 D-dimer and plasmin–antiplasmin complexes
were quantified as previously described.12 For nucleosome de-
tection, a Cell Death Detection ELISA PLUS Kit (Roche Diagnostics
GmbH,Mannheim, Germany) was used. C3b and C5b-9 levels were
measured as previously described.19 Plasma cytokines were mea-
sured by using the MILLIPLEX MAP Non-Human Primate Cytokine
Magnetic Bead Panel (EMD Millipore, Billerica, MA).

Microscopy
Harvested tissues were formalin fixed and embedded in paraffin
or optimum cutting temperature medium. Histopathologic
analysis and scoring of paraffin sections stained with hematoxylin-
eosin or phosphotungstic acid–hematoxylin were performed by a
veterinary pathologist blinded to the experimental conditions.
For immunofluorescence confocal microscopy on optimum
cutting temperature sections, the following antibodies were used:
mouse monoclonal anti-human GPIIIa (clone SZ21; Beckman
Coulter, Brea, CA), rabbit anti-human fibrinogen and mouse
monoclonal anti-human CD68 (clone KP1), both from Agilent
Technologies (Santa Clara, CA), rabbit antineutrophil elastase
(MilliporeSigma, Burlington, MA), and mouse monoclonal anti-
human C5b-9 neopeptide (clone aE11, Enzo Life Sciences Inc,
Farmingdale, NY).

Statistical analysis
Data are depicted as mean 6 standard error of the mean. Vi-
sualization was performed by using Prism version 9.0 (GraphPad
Software, La Jolla, CA). The significance threshold was set at
P, .05 (*P, .05; **P, .01; ***P, .001). For parameters measured
at multiple time points, confidence intervals and P values were
determined by using the generalized least squares (gls) function
implemented in the nlme R package. The function implements a
linear mixed effect model, tailored to the specific repeated
measure design by proper specification of the random effect
structure.20 An AR(1) correlation structure describes the variation
of measured values on the same animal along a time path. An
overall P value for the difference between 2 curves along the
time path was retrieved from the analysis of variance table on the
linear model. Statistical testing was limited to 0- to 8-hour in-
tervals. Inference was preceded by a Box-Cox transformation21

when visual inspection of the diagnosis plots showed the need
for better matching the model assumptions. For easier in-
terpretation, the results are shown in the original linear scale.
Temporal changes of the vital signs (temperature, respiration,
heart rate, andmean systemic arterial pressure) were modeled in
the framework of Generalized Additive Models, as implemented
in the Generalized Additive Models function of the R package,
mgcv.22 The function uses smoothing splines for fitting the
temporal curves and can handle random effect specifications.
The log-rank (Mantel-Cox) test was used to evaluate the dif-
ferences in survival curves.

Results
Effect of 5C12 on baboon survival after lethal
challenge with HI-SA
Intravenous infusion of 1010 HI-SA bacteria/kg body weight in-
duces systemic inflammation and robust activation of coagulation,
leading to disseminated intravascular coagulation (DIC).12 All
control animals receiving bacteria were humanely euthanized
within 10 to 34 hours’ postchallenge due to irreversible organ
failure. All treated baboons that received 3 consecutive doses of
the 5C12 antibody had only mild and transient clinical symptoms,
recovered quickly, and reached the 7-day end point asymp-
tomatic (Mantel-Cox test, P 5 .0067) (Figure 1).

Effect of 5C12 on HI-SA–induced coagulopathy
HI-SA infusion led to pronounced prolongation of the aPTT and
PT (Figure 2A-B); activation of FXII, FXI, and prekallikrein (Figure
2C-F, 2I-M); consumptive coagulopathy characterized by a de-
crease in fibrinogen level (Figure 3A) and platelet count
(Figure 3B); microvascular thrombosis (Figure 3C-D); and acti-
vation of the fibrinolytic pathway (Figure 3E-H). aPTTwas already
elevated at 2 hours, and plasma levels of protease-serpin
complexes (FXIIa-AT, FXIIa-C1INH, Kal-AT, Kal-C1INH, FXIa-
AT, and FIXa-AT) increased early within 2 to 6 hours after
bacterial challenge (Figure 2I-J). HI-SA also induced activation of
the kallikrein-kinin system, as indicated by HK consumption and
increased amount of cleaved HK during the first 4 hours’
postchallenge (Figure 2G-H).

Treatment with 5C12 markedly decreased HI-SA–induced FXII
activation, as indicated by the reduction in FXIIa-AT and FXIIa-
C1INH complex formation (Figure 2C-D), and decreased acti-
vation of the kallikrein-kinin system (Figure 2E-H) compared with
the control animals. FXII inhibition also reduced the formation of
FVIIa-AT complexes (Figure 2K) and TF expression on circulating
leukocytes (Figure 2N). 5C12 treatment led to decreased FXa-AT
(Figure 2L) and TAT (Figure 2M), suggesting a general inhibition
of coagulation.
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Figure 1. 5C12 anti-FXII antibody treatment prevents the death of baboons
injected with a lethal dose of HI-SA (LDSA). Survival plot of baboons treated with
the anti-FXII antibody 5C12 and injected with LDSA (LDSA1 5C12, n5 4) compared
with animals challengedwith LDSA but lacking the 5C12 treatment (LDSA, n5 4). The
survival rate of these 2 groups was determined by using the Mantel-Cox (log-rank)
test. Results are significant at P , .01.
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Fibrinogen consumption (Figure 3A), decreased platelet counts
(Figure 3B), and the aforementioned increase in clotting times all
indicate the development of consumptive coagulopathy after
HI-SA infusion, typical of some forms of bacterial or viral sepsis.23

Microscopic analysis of select vital organs, such as kidney
(Figure 3C) and lung (Figure 3D) harvested from untreated
control animals revealed increased fibrin deposition and the
presence of fibrin- and platelet-rich microthrombi. As is common
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Figure 2. Effect of 5C12 anti-FXII antibody treatment on the activation of coagulation and coagulopathy in baboons challenged with a lethal dose of HI-SA (LDSA).
Time course dynamics of aPTT (A), PT (B), complexes of FXIIa- AT (C), FXIIa-C1 inhibitor (D), kallikrein-AT (E), kallikrein-C1 inhibitor (F), total kininogen (G), cleaved kininogen (H),
FXIa-AT (I), FIXa-AT (J), FVIIa-AT (K), FXa-AT (L), TAT (M), and TFmRNA in leukocytes (N) in HI-SA–challenged animals, with or without 5C12 antibody treatment. Same time points
are compared between the treated and untreated baboons by using the generalized least squares (gls) function as described in the Statistical analysis section. *P, .05; **P, .01;
***P , .001. The overall P value (pvl) describing the difference between the 2 curves is shown on each graph. P , .05 is considered significant.
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in sepsis DIC, HI-SA challenge induced t-PA release (Figure 3E)
paralleled by strong induction of PAI-1 (Figure 3F). Peak plasmin
generation (Figure 3G) was restricted to the first 2 hours, sug-
gesting the suppression of fibrinolysis by PAI-1 during the 4 to
24 hours’ postchallenge period. D-dimer (Figure 3H) remained
elevated during the entire time course of clinical deterioration in
the HI-SA–challenged control animals. All 5C12-treated animals
displayed decreased levels of the fibrinolytic markers.

Effect of 5C12 on the intravascular
microenvironment and blood cells
HI-SA challenge led to an early increase in RBC and hematocrit
(Figure 4A-B), suggesting hemoconcentration. This may reflect

increased capillary permeability induced by bradykinin generated
after HK cleavage (Figure 2H). Bacterial challenge also induced a
rapid drop in circulating leukocytes, especially neutrophils and
lymphocytes, which normalized within 24 hours’ postchallenge
(Figure 4C-F). Immunofluorescence staining for neutrophil elas-
tase in the lung indicated a striking accumulation of neutrophils
(Figure 4G). Neutrophil activation was reflected in the marked
increase of MPO released into the plasma (Figure 4H).

Treatment with 5C12 prevented the increase in RBC and he-
matocrit, and slightly yet significantly reduced the consumption
of neutrophils. 5C12 treatment blunted MPO activity in plasma,
which suggests decreased levels of neutrophil activation and
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degranulation. Immunostaining of tissues collected from treated
animals revealed no significant pathology in the lung after 7
days’ postbacterial infusion and full clinical recovery (Figure 4G).

Effect of 5C12 on organ function and inflammation
after HI-SA infusion in baboons
HI-SA challenge induced progressive multiorgan dysfunction
leading to organ failure in all untreated animals. Baboons exhibited
signs of early cardiorespiratory distress, with a drop in mean sys-
temic arterial pressure, tachycardia, tachypnea, and a transient
increase in body temperature (supplemental Figure 2A-D). 5C12
treatment blunted the drop in blood pressure and prevented the
rise in body temperature.

Untreated animals gradually developed liver, pancreas, and
kidney dysfunction or damage, as indicated by increased serum
blood urea nitrogen, creatinine, alanine aminotransferase, and
pancreatic amylase levels (Figure 5A-D). After an initial increase
in blood glucose at 2 hours, animals became hypoglycemic
within 4 to 8 hours’ postchallenge, suggesting metabolic dis-
turbance (Figure 5E). Baboons treated with 5C12were protected
from acute organ damage, and hypoglycemia was less severe.

Consistent with the profound organ damage, untreated control
animals had highly elevated levels of circulating nucleosomes
(Figure 6A), a marker of cell death. FXII inhibition significantly
reduced plasma nucleosomes, reflecting organ preservation.

HI-SA induced robust complement activation, as shown by in-
creased circulating C3b (Figure 6B) and soluble terminal com-
plement complex C5b-9 (Figure 6C). Treatment with 5C12

markedly reduced both C3b and sC5b-9. Immunofluorescence
staining for C5b-9 in the kidney showed increased staining, es-
pecially in peritubular locations in untreated animals (Figure 6D).

HI-SA infusion provoked systemic inflammation in untreated
animals characterized by high levels of plasma cytokines, in-
cluding tumor necrosis factor (TNF), interleukin (IL)-1b, IL-6, IL-8,
IL-10, granulocyte-macrophage colony-stimulating factor; 5C12
treatment reduced the cytokine storm (Figure 7).

HI-SA–induced organ damage was confirmed by histopathology
in select organs collected at necropsy. Although postmortem
histopathologic evaluation cannot be temporally compared
between animals because of varying times of death, essentially
normal histology of survivors suggested either healing without
residual damage or lack of severe damage to start with, con-
sistent with the organ function and damage data collected
during the time course of the experiments.

Kidneys of nontreated baboons euthanized at 10 to 34 hours’
postchallenge showed glomerular and peritubular fibrin de-
position and microthrombosis, and widespread tubular necrosis
characterized by nuclear pyknosis and karyolysis (supplemental
Figure 3A). Livers exhibited slightly swollen hepatocytes and
marked leukocyte infiltration in peri-sinusoidal spaces (supple-
mental Figure 3B). Lungs also showed leukocyte infiltration into
the interalveolar wall, leukocyte aggregation in small to medium
vessels, and marked congestion (supplemental Figure 3C).
Spleens were congested and showed prominent leukocyte in-
filtration of the red pulp, as well as lymphoid follicular apoptosis
in the central white pulp (supplemental Figure 3D). Organs from
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all 5C12-treated animals displayed no residual damage, in-
dicating full recovery at day 7 postchallenge.

Discussion
This study showed that FXII plays a substantial role in promoting
pathologic inflammatory host responses in baboons challenged
with a lethal dose of HI-SA. This work builds on previous animal
models of infection and/or inflammation by our group and
others, including the study of the effect of an anti-FXI antibody in
the same baboonmodel.12 Our results further solidify the roles of
FXI and FXII in inflammation and coagulation activation during
the host response to a severe challenge to homeostasis as
produced by infusing heat-inactivated gram-positive bacteria.

Despite potent antimicrobial agents and improved supportive
care, sepsis remains among the leading causes of death world-
wide.1 After.150 clinical trials of experimental treatments, no new
strategies proved safe and effective to interrupt the complex and
often deadly host response to severe infection. Early recognition of

the interplay between coagulation and inflammation drove the
investigation of potential targets, including anticoagulants
(eg, heparins, activated protein C, AT, TF pathway inhibitor,
recombinant thrombomodulin), inhibitors of bacterial products,
and pro-inflammatory cytokines (eg, TNF, IL-6). Clinical trial data
showing little to no benefit or concerning safety signals deterred
further consideration of these agents.24,25 Barriers to the identifi-
cation of safe and effective therapeutic agents specific to sepsis
include uncertainties about appropriate timing of novel drug ad-
ministration and variability in host response to distinct pathogens.
Equally plausible is that a therapeutic target that dampens co-
agulation and inflammation to a safe but effective degree is hard
to identify. Based on our study, we posit that FXII of the contact
activation system could achieve this ideal balance in certain cases.
Key to this hypothesis is the clinical finding that humans deficient
in FXII experience neither abnormal bleeding nor any noticeable
immune deficiency, despite the position of FXII at the intersection
of several critical biochemical pathways.26 Based on published
animal and observational human data, the potential safety of
pharmacologic FXII inhibition in humans looks encouraging.17,27
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FXII is a 80-kDa precursor of the serine protease FXIIa, which
can be activated by kallikrein, FXIa, or through autoactivation
in the presence of negatively charged surfaces and HK.13

During infections, such charged surfaces may include: path-
ogen surfaces, components, and bacterial wall products,
bacterial or platelet polyphosphate, subendothelial collagen
and laminin, misfolded or denatured proteins, neutrophils,
glycosaminoglycans, and nucleic acids released from dying
cells, viruses, or from neutrophil extracellular traps.28 How-
ever, these mechanisms have not yet been well characterized
in vivo.

Upon activation, FXII is cleaved, resulting in a heavy chain
connected to a light chain via a disulfide bond.10,29 The
resulting FXIIa protease is positioned at the nexus of the kinin-

kallikrein, complement, coagulation, and fibrinolytic pathways.
With respect to the kallikrein-kinin and complement systems,
FXIIa can activate pre-kallikrein to kallikrein, which can then
convert FXII to FXIIa in a feedback mechanism. Moreover, FXIIa
can activate the complement cascade via activation of the
C1qrs complex,30 whereas kallikrein also activates factors B,
C3, and C5.31 FXIIa also plays a role in coagulation by activating
FXI to FXIa, which accelerates production of thrombin that
drives platelet activation and fibrin formation, and exerts ef-
fects on a variety of cells.29,32 When FXIIa is cleaved after
Arg334, the resulting b-FXIIa can still generate kallikrein, which
further cleaves HK to release bradykinin, a systemic vaso-
regulatory and inflammatory mediator.33,34 Nevertheless,
b-FXIIa is unable to activate FXI and thus does not substantially
participate in the coagulation system.29
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Our data show that inhibiting FXIIa using 5C12 abrogates the
increase in plasma markers of inflammation or cell damage and
inhibits the activation of coagulation after lethal challenge with
HI-SA. Specifically, no substantial increases in circulating TNF,
IL-1b, IL-6, IL-8, IL-10, granulocyte-macrophage colony-
stimulating factor, nucleosomes, or MPO levels were seen
after treatment with 5C12 in our primate model of systemic
inflammatory response. Notably, 5C12-mediated FXIIa in-
hibition strongly decreased TNF levels; conversely, this was not
observed in our previous study using the anti-FXI monoclonal
antibody 3G3, which inhibits the activation of FXI by FXIIa and
the reciprocal FXIa-mediated FXII activation.12 Indeed, 5C12
more potently decreased the serum and physiological markers
of cytokine storm compared with 3G3.12 However, similarly to
3G3,12 5C12 treatment reduced activity of all 3 arms of the
traditional coagulation pathways: the intrinsic pathway shown by
substantial reduction in FXIIa-AT and FXIIa-C1INH complexes;
the extrinsic pathway via lower plasma FVIIa-AT complexes and
reduced TF expression by circulating leukocytes; and the
common pathway shown by reduced FXa-AT and TAT com-
plexes. The inhibitory effects on levels of TF and the fibrinolysis
inhibitor PAI-1 were more pronounced in animals treated with
5C12 than with 3G3,12 likely reflecting the robust decrease of
TNF, IL-6, and IL-1b observed with 5C12, as these cytokines are
known inducers of both TF35 and PAI-1.36

Targeting FXII as a sepsis therapy in baboon models was
attempted .2 decades ago.5-7 Although direct comparison be-
tween our data and the historic studies using the anti–b-FXIIa
C6B7 antibody cannot be made due to experimental and mo-
lecular target differences, there are several similarities and di-
vergences between these studies. Both C6B7 treatment in E coli
sepsis and 5C12 treatment in HI-SA challenge decreased acti-
vation of complement and fibrinolysis, reduced production of
several proinflammatory cytokines, and blunted neutrophil acti-
vation.7 Because neutrophil accumulation is a landmark event
seen in both clinical and experimental sepsis, including baboon
models of localized infection,37 and may be partially explained by
the intravenous delivery of bacterial PAMPs, it is of note that a role
for FXII in upregulating neutrophil function and accumulation was
recently highlighted in mice.38 Although these and other simi-
larities were observed between the studies, several stark differ-
ences were noted. Only the anticoagulant anti–FXII/FXIIa 5C12
prevented the increase in TNF, TF, and PAI-1 levels. Moreover,
C6B7 did not protect against sepsis DIC,5 possibly because the
coagulopathy in gram-negative sepsis is driven mainly by
lipopolysaccharide-induced TF expression. Inhibition of FXII or
FXI12 activation in our model of gram-positive challenge blunted
the activation of coagulation, likely resulting from the fact that
the gram-positive PAMP peptidoglycan is an inducer of both
intrinsic and extrinsic coagulation.15 Moreover, when comparing
5C12 and C6B7 in an aPTT assay, we confirmed that the anti-
coagulant 5C12 inhibited plasma coagulation at significantly
lower concentrations than the C6B7 antibody. Consequently,
C6B7may not have offered sufficient inhibition of procoagulant FXIIa
generation or activity in the early sepsis studies. Finally, both treat-
ments improved physiological parameters, including blood pressure,
but only 5C12 saved all challenged baboons, whereas C6B7 ex-
tended the life of animals but only saved 1 of 5 treated baboons.

We acknowledge limitations to our study, including the small
number of test animals, use of heat-inactivated rather than live

bacteria, and administration of 5C12 antibody before bacterial
challenge. Our experiments indicate that prophylactic inhibition
of FXII attenuated the acute effects of S aureus–derived PAMPs.
Exposure to S aureus material would predictably occur in bac-
teremic patients when antibiotic treatment causes rapid bacteri-
olysis with release of cell debris into the circulation. Therefore, FXII
inhibition before or at the time of initiation of antibiotic treatment
could have a beneficial clinical effect. Use of PAMPs, but not live
S aureus challenge, sacrificed some relevance in our diseasemodel;
however, it allowed us to standardize the dose of the lethal chal-
lenge and to avoid the effects of S aureus exotoxins that interfere
with coagulation and fibrinolysis pathways.39 Chiefly important, we
managed to achieve reproducible data and improve our ability to
detect efficacy or safety signals using a small number of animals. In
the future, using live bacteria and administration of an FXII inhibitor
and antibiotics after the setup of a severe infection or sepsis could
provide information on whether treatment of sepsis using FXIIa
inhibitors would also generate outcome benefit.

In summary, we showed that FXII plays a significant role in pro-
moting coagulation and inflammation in a baboon model of lethal
HI-SA challenge, and that inhibiting FXII dampens these processes
enough to reduce mortality and morbidity. FXII remains an at-
tractive target for novel sepsis prevention or mitigation efforts in
severe infections in which FXII activity has a pathogenic role.
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Schlüter H, Renné T. The plasma contact
system, a protease cascade at the nexus of
inflammation, coagulation and immunity.
Biochim Biophys Acta Mol Cell Res. 2017;
1864(11 pt B):2118-2127.
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